Figure 9-1

(b) The flatworm nervous system has a primitive brain.

(d) The fish forebrain is small compared to remainder of brain.

(c) The earthworm nervous system has a simple brain and ganglia along a nerve cord.

(e) The goose forebrain is larger.

(f) The human forebrain dominates the brain.

Figure 9-2

(a) In the 20-day embryo (dorsal view), neural plate cells (purple) migrate toward the midline. Neural crest cells migrate with the neural plate cells.
 becomes CNS.
(b) By day 23 of embryonic development, neural tube formation is almost complete.

Figure 9-3

Figure 9-4, overview

Copyright © 2010 Pearson Education, Inc.

Figure 9-5a

ANATOMY SUMMARY VENTRICLES OF THE BRAIN

Figure 9-5bc

Figure 9-5bd

Figure 9-7

(b) Gray matter consists of sensory and motor nuclei.

KEY
Ascending tracts carry sensory information to the brain.

Descending tracts

(c) White matter in the spinal cord consists of axons carrying information to and from the brain.

Figure 9-8

Figure 9-9, overview

Figure 9-9-1

ANATOMY SUMMARY

FUNCTIONS OF THE BRAIN

REGION	FUNCTION
- Diencephalon (See Fig. 9-10)	
Thalamus Hypothalamus Pituitary Pineal gland	Integrating center and relay station for sensory and motor information Homeostasis and behavioral drives (See Table 9-2) Hormone secretion Melatonin secretion
Cerebellum	Movement coordination
Brain stem	
- Midbrain	Eye movement
Pons	Relay station between cerebrum and cerebellum; coordination of breathing
- Medulla oblongata	Control of involuntary functions
Reticular formation (See Fig. 9-19)	Arousal, sleep, muscle tone, pain modulation

Figure 9-10

Table 9-2

TABLE 9-2 Functions of the Hypothalamus

1. Activates sympathetic nervous system

- Controls catecholamine release from adrenal medulla (as in fight-or-flight reaction)
- Helps maintain blood glucose concentrations through effects on endocrine pancreas

2. Maintains body temperature

- Stimulates shivering and sweating

3. Controls body osmolarity

- Motivates thirst and drinking behavior
- Stimulates secretion of vasopressin [p . XXX]

4. Controls reproductive functions

- Directs secretion of oxytocin (for uterine contractions and milk release)
- Directs trophic hormone control of anterior pituitary hormones FSH and LH [e p. XXX]

5. Controls food intake

- Stimulates satiety center
- Stimulates feeding center

6. Interacts with limbic system to influence behavior and emotions
7. Influences cardiovascular control center in medulla oblongata
8. Secretes trophic hormones that control release of hormones from anterior pituitary gland

Figure 9-11

Figure 9-13

Figure 9-14

(a) A simple neural reflex

(b) Behavioral state and cognition influence brain output.

Figure 9-15

Figure 9-16

Copyright © 2010 Pearson Education, Inc.

Figure 9-17

(a) Norepinephrine

(c) Dopamine

(d) Acetylcholine

Figure 9-21

Figure 9-22

Figure 9-23

(b) Speaking a heard word

TABLE 9-1	The Cranial	Nerves	
NUMBER	NAME	TYPE	FUNCTION
I	Olfactory	Sensory	Olfactory (smell) information from nose
II	Optic	Sensory	Visual information from eyes
III	Oculomotor	Motor	Eye movement, pupil constriction, lens shape
IV	Trochlear	Motor	Eye movement
V	Trigeminal	Mixed	Sensory information from face, mouth; motor signals for chewing
VI	Abducens	Motor	Eye movement
VII	Facial	Mixed	Sensory for taste; efferent signals for tear and salivary glands, facial expression
VIII	Vestibulocochlear	Sensory	Hearing and equilibrium
IX	Glossopharyngeal	Mixed	Sensory from oral cavity, baro- and chemoreceptors in blood vessels; ef- ferent for swallowing, parotid salivary gland secretion
X	Vagus	Mixed	Sensory and efferents to many internal organs, muscles, and glands
XI	Spinal accessory	Motor	Muscles of oral cavity, some muscles in neck and shoulder
XII	Hypoglossal	Motor	Tongue muscles

TABLE 9-4

Types of Long-Term Memory

REFLEXIVE (IMPLICIT) MEMORY

Recall is automatic and does not require conscious attention

Acquired slowly through repetition

Includes motor skills and rules and procedures

Procedural memories can be demonstrated

DECLARATIVE (EXPLICIT) MEMORY

Recall requires conscious attention

Depends on higher-level thinking skills such as inference, comparison, and evaluation

Memories can be reported verbally

